کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5126913 | 1488941 | 2017 | 24 صفحه PDF | دانلود رایگان |
- A game-theoretic approach is used to measure centrality of nodes.
- The approach is based on cooperative games with transferable utility.
- The approach evaluates nodes based on their joint contribution to the network.
- Suitable utility functions are used to integrate demand within the analysis.
Network connectivity is an important aspect of any transportation network, as the role of the network is to provide a society with the ability to easily travel from point to point using various modes. A basic question in network analysis concerns how “important” each node is. An important node might, for example, greatly contribute to short connections between many pairs of nodes, handle a large amount of the traffic, generate relevant information, represent a bridge between two areas, etc. In order to quantify the relative importance of nodes, one possible approach uses the concept of centrality. A limitation of classical centrality measures is the fact that they evaluate nodes based on their individual contributions to the functioning of the network. The present paper introduces a game theory approach, based on cooperative games with transferable utility. Given a transportation network, a game is defined taking into account the network topology, the weights associated with the arcs, and the demand based on an origin-destination matrix (weights associated with nodes). The network nodes represent the players in such a game. The Shapley value, which measures the relative importance of the players in transferable utility games, is used to identify the nodes that have a major role. For several network topologies, a comparison is made with well-known centrality measures. The results show that the suggested centrality measures outperform the classical ones, and provide an innovative approach for transportation network analysis.
Journal: Transportation Research Part B: Methodological - Volume 105, November 2017, Pages 120-143