کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5129329 1489640 2017 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-validation estimation of covariance parameters under fixed-domain asymptotics
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Cross-validation estimation of covariance parameters under fixed-domain asymptotics
چکیده انگلیسی

We consider a one-dimensional Gaussian process having exponential covariance function. Under fixed-domain asymptotics, we prove the strong consistency and asymptotic normality of a cross validation estimator of the microergodic covariance parameter. In this setting, Ying (1991) proved the same asymptotic properties for the maximum likelihood estimator. Our proof includes several original or more involved components, compared to that of Ying. Also, while the asymptotic variance of maximum likelihood does not depend on the triangular array of observation points under consideration, that of cross validation does, and is shown to be lower and upper bounded. The lower bound coincides with the asymptotic variance of maximum likelihood. We provide examples of triangular arrays of observation points achieving the lower and upper bounds. We illustrate our asymptotic results with simulations, and provide extensions to the case of an unknown mean function. To our knowledge, this work constitutes the first fixed-domain asymptotic analysis of cross validation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 160, August 2017, Pages 42-67
نویسندگان
, , ,