کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5129407 1489643 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian sparse reduced rank multivariate regression
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Bayesian sparse reduced rank multivariate regression
چکیده انگلیسی

Many modern statistical problems can be cast in the framework of multivariate regression, where the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which, when combined with sparsity, can further lift dimension reduction, conduct variable selection, and facilitate model interpretation. Using a Bayesian approach, we develop a unified sparse and low-rank multivariate regression method to both estimate the coefficient matrix and obtain its credible region for making inference. The newly developed sparse and low-rank prior for the coefficient matrix enables rank reduction, predictor selection and response selection simultaneously. We utilize the marginal likelihood to determine the regularization hyperparameter, so our method maximizes its posterior probability given the data. For theoretical aspect, the posterior consistency is established to discuss an asymptotic behavior of the proposed method. The efficacy of the proposed approach is demonstrated via simulation studies and a real application on yeast cell cycle data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 157, May 2017, Pages 14–28