کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5129605 | 1489743 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Powerful nonparametric checks for quantile regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
- We develop a new omnibus lack-of-fit test for a parametric quantile regression.
- It involves one-dimensional kernel smoothing only whatever the covariates dimension.
- The test is easy to apply and compare favorably to competitors in simulations.
We propose a new and simple lack-of-fit test for a parametric quantile regression. It involves one-dimensional kernel smoothing, so that the rate at which it detects local alternatives is independent of the number of covariates. The test has asymptotically Gaussian critical values, and wild bootstrap can be applied to obtain more accurate ones in small samples. Our procedure appears to be competitive with existing ones in simulations and in an empirical application with several covariates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 180, January 2017, Pages 13-29
Journal: Journal of Statistical Planning and Inference - Volume 180, January 2017, Pages 13-29
نویسندگان
Samuel Maistre, Pascal Lavergne, Valentin Patilea,