کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
513240 866460 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inverse fracture problems in piezoelectric solids by local integral equation method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Inverse fracture problems in piezoelectric solids by local integral equation method
چکیده انگلیسی

The meshless local Petrov–Galerkin (MLPG) method is used to solve the inverse fracture problems in two-dimensional (2D) piezoelectric body. Electrical boundary conditions on the crack surfaces are not specified due to unknown dielectric permittivity of the medium inside the crack. Both stationary and transient dynamic boundary conditions are considered here. The analyzed domain is covered by small circular subdomains surrounding nodes spread randomly over the analyzed domain. A unit step function is chosen as test function in deriving the local integral equations (LIE) on the boundaries of the chosen subdomains. The Laplace-transform technique is applied to eliminate the time variation in the governing equation. The local integral equations are nonsingular and take a very simple form. The spatial variation of the Laplace transforms of displacements and electrical potential are approximated on the local boundary and in the interior of the subdomain by means of the moving least-squares (MLS) method. The singular value decomposition (SVD) is applied to solve the ill-conditioned linear system of algebraic equations obtained from the LIE after MLS approximation. The Stehfest algorithm is applied for the numerical Laplace inversion to retrieve the time-dependent solutions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 33, Issues 8–9, August–September 2009, Pages 1089–1099
نویسندگان
, , , ,