کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
513774 866641 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Immersed normalized B-spline finite elements – A convergence study for 2D problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Immersed normalized B-spline finite elements – A convergence study for 2D problems
چکیده انگلیسی

Sanches et al. (2011) [21] introduced a novel B-spline based immersed finite element method (FEM), called I-spline FEM, for the computation of geometrically and topologically complex problems. Away from the domain boundaries, the standard B-spline basis functions are used for the finite element interpolation, however, close to domain boundaries, the B-spline basis functions are modified, so that they locally interpolate the Dirichlet boundary conditions. Although the new technique is demonstrated to be robust and efficient, in the first tests it appeared to present very small convergence rates considering the B-spline order. In this work we propose a quadrature procedure for boundary cells based on triangles subdivision and linear mapping and make use of 2D elasticity and Poisson problems to study the I-spline finite element method convergence. Cubic B-splines are considered and all changes due to the B-spline modifications are studied regarding its influence in convergence rate. Finally, we show that good convergence rates, cubic for displacements and quadratic for stresses, may be achieved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Elements in Analysis and Design - Volume 114, July 2016, Pages 57–67
نویسندگان
, , ,