کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
514397 866735 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adjoint shape design sensitivity analysis of fluid–solid interactions using concurrent mesh velocity in ALE formulation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Adjoint shape design sensitivity analysis of fluid–solid interactions using concurrent mesh velocity in ALE formulation
چکیده انگلیسی


• Accurate adjoint shape design sensitivity for coupled FSI problems.
• Efficient shape sensitivity analysis using converged tangent from nonlinear FSI analysis.
• Variational equation includes the moving boundary of fluids in ALE formulation.
• Concurrent mesh velocity determined from a displacement-loaded pseudo-structural problem.
• A fast convergence of total solution due to consistent fluid mesh, interface, and solid mesh.

A coupled variational equation for fluid–solid interaction (FSI) problems is derived using a steady state Navier–Stokes equation for incompressible flows, an equilibrium equation for geometrically nonlinear solids, a traction continuity condition at interfaces, and a pseudo-equilibrium equation for mesh velocity. The moving boundary in arbitrary Lagrangian–Eulerian (ALE) formulation is included in the variational equations by the mesh velocity obtained from a displacement-loaded pseudo-structural problem at a concurrent configuration, which eventually facilitates to derive shape design sensitivity. A continuum-based adjoint shape sensitivity is derived under ALE formulation, which turns out to be very accurate and efficient due to the utilization of converged tangent and the linearity of both adjoint and sensitivity equations. Through numerical examples, the obtained sensitivity is verified in terms of accuracy and efficiency compared with finite difference sensitivity and further applied to the shape optimization problem of finding a stiff structure while satisfying a volume constraint.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Elements in Analysis and Design - Volume 85, August 2014, Pages 20–32
نویسندگان
, ,