کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518315 867577 2014 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unconditionally stable time marching scheme for Reynolds stress models
ترجمه فارسی عنوان
طرح ریزی بدون قید و شرط ثابت برای مدل های تنش رینولدز
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

Progress toward a stable and efficient numerical treatment for the compressible Favre–Reynolds-averaged Navier–Stokes equations with a Reynolds-stress model (RSM) is presented. The mean-flow and the Reynolds stress model equations are discretized using finite differences on a curvilinear coordinates mesh. The convective flux is approximated by a third-order upwind biased MUSCL scheme. The diffusive flux is approximated using second-order central differencing, based on a full-viscous stencil. The novel time-marching approach relies on decoupled, implicit time integration, that is, the five mean-flow equations are solved separately from the seven Reynolds-stress closure equations. The key idea is the use of the unconditionally positive-convergent implicit scheme (UPC), originally developed for two-equation turbulence models. The extension of the UPC scheme for RSM guarantees the positivity of the normal Reynolds-stress components and the turbulence (specific) dissipation rate for any time step. Thanks to the UPC matrix-free structure and the decoupled approach, the resulting computational scheme is very efficient. Special care is dedicated to maintain the implicit operator compact, involving only nearest neighbor grid points, while fully supporting the larger discretized residual stencil. Results obtained from two- and three-dimensional numerical simulations demonstrate the significant progress achieved in this work toward optimally convergent solution of Reynolds stress models. Furthermore, the scheme is shown to be unconditionally stable and positive.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 276, 1 November 2014, Pages 635–664
نویسندگان
,