کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518388 867585 2014 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geometric interpretations and spatial symmetry property of metrics in the conservative form for high-order finite-difference schemes on moving and deforming grids
ترجمه فارسی عنوان
تفسیرهای هندسی و ویژگی تقارنی فضایی معیارهای در فرم محافظه کارانه برای طرح های اختلاف محدود در سطح بالا در شبکه های متحرک و تغییر شکل پذیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

The role of a geometric conservation law (GCL) on a finite-difference scheme is revisited for conservation laws, and the conservative forms of coordinate-transformation metrics are introduced in general dimensions. The sufficient condition of a linear high-order finite-difference scheme is arranged in detail, for which the discretized conservative coordinate-transformation metrics and Jacobian satisfy the GCL identities on three-dimensional moving and deforming grids. Subsequently, the geometric interpretation of the metrics and Jacobian discretized by a linear high-order finite-difference scheme is discussed, and only the symmetric conservative forms of the discretized metrics and Jacobian are shown to have the appropriate geometric structures. The symmetric and asymmetric conservative forms of the metrics and Jacobian are examined by the computation of an inviscid compressible fluid on highly-skewed stationary and deforming grids using sixth-order compact and fourth-order explicit central-difference schemes, respectively. The resolution of the isentropic vortex and the robustness of the computation are improved by employing symmetric conservative forms on the coordinate-transformation metrics and Jacobian that have an appropriate geometry background. An integrated conservation of conservative quantities is also attained on the deforming grid when symmetric conservative forms are adopted to the time metrics and Jacobian.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 260, 1 March 2014, Pages 163–203
نویسندگان
, , , ,