کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
518985 867631 2011 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced linearized reduced-order models for subsurface flow simulation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Enhanced linearized reduced-order models for subsurface flow simulation
چکیده انگلیسی

Trajectory piecewise linearization (TPWL) represents a promising approach for constructing reduced-order models. Using TPWL, new solutions are represented in terms of expansions around previously simulated (and saved) solutions. High degrees of efficiency are achieved when the representation is projected into a low-dimensional space using a basis constructed by proper orthogonal decomposition of snapshots generated in a training run. In recent work, a TPWL procedure applicable for two-phase subsurface flow problems was presented. The method was shown to perform well for many cases, such as those with no density differences between phases, though accuracy and robustness were found to degrade in other cases. In this work, these limitations are shown to be related to model accuracy at key locations and model stability. Enhancements addressing both of these issues are introduced. A new TPWL procedure, referred to as local resolution TPWL, enables key grid blocks (such as those containing injection or production wells) to be represented at full resolution; i.e., these blocks are not projected into the low-dimensional space. This leads to high accuracy at selected locations, and will be shown to improve the accuracy of important simulation quantities such as injection and production rates. Next, two techniques for enhancing the stability of the TPWL model are presented. The first approach involves a basis optimization procedure in which the number of columns in the basis matrix is determined to minimize the spectral radius of an appropriately defined amplification matrix. The second procedure incorporates a basis matrix constructed using snapshots from a simulation with equal phase densities. Both approaches are compatible with the local resolution procedure. Results for a series of test cases demonstrate the accuracy and stability provided by the new treatments. Finally, the TPWL model is used as a surrogate in a direct search optimization algorithm, and comparison with results using the full-order model demonstrates the efficacy of the enhanced TPWL procedures for this application.


► Trajectory piecewise linearization (TPWL) is studied for subsurface flow problems.
► TPWL accuracy is improved through application of a local resolution treatment.
► Two approaches for achieving improved numerical stability are presented.
► Extensive tests show applicability of the new procedures for realistic problems.
► Method is used for an optimization problem where occasional retraining is applied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 23, 20 September 2011, Pages 8313–8341
نویسندگان
, , ,