کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
519268 867652 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving eigenvalue problems on curved surfaces using the Closest Point Method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Solving eigenvalue problems on curved surfaces using the Closest Point Method
چکیده انگلیسی

Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace–Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach.


► A simple algorithm for solving eigenvalue problems on a general curved surfaces.
► Implicit representation of the geometry allows for open or non-orientable surfaces.
► A simple way to impose Dirichlet and Neumann boundary conditions.
► Includes Laplace–Beltrami example computations and convergence studies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 230, Issue 22, 10 September 2011, Pages 7944–7956
نویسندگان
, , ,