کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
519518 | 867670 | 2011 | 6 صفحه PDF | دانلود رایگان |

A Monte Carlo method has been developed for the calculation of binary diffusion coefficients in gas mixtures. The method is based on the stochastic solution of the linear Boltzmann equation obtained for the transport of one component in a thermal bath of the second one. Anisotropic scattering is included by calculating the classical deflection angle in binary collisions under isotropic potential. Model results are compared to accurate solutions of the Chapman–Enskog equation in the first and higher orders. We have selected two different cases, H2 in H2 and O in O2, assuming rigid spheres or using a model phenomenological potential. Diffusion coefficients, calculated in the proposed approach, are found in close agreement with Chapman–Enskog results in all the cases considered, the deviations being reduced using higher order approximations.
Journal: Journal of Computational Physics - Volume 230, Issue 14, 20 June 2011, Pages 5716–5721