کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
519718 867679 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes
ترجمه فارسی عنوان
تمیز کردن واگرایی هیپربولیک، محدودۀ الکترواستاتیک و شرایط مرزی بالقوه برای کدهای ذره در سلول
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

In a numerical solution of the Maxwell–Vlasov system, the consistency with the charge conservation and divergence conditions has to be kept solving the hyperbolic evolution equations of the Maxwell system, since the vector identity ∇⋅(∇×u→)=0 and/or the charge conservation of moving particles may be not satisfied completely due to discretization errors. One possible method to force the consistency is the hyperbolic divergence cleaning. This hyperbolic constraint formulation of Maxwell's equations has been proposed previously, coupling the divergence conditions to the hyperbolic evolution equations, which can then be treated with the same numerical method. We pick up this method again and show that electrostatic limit may be obtained by accentuating the divergence cleaning sub-system and converging to steady state. Hence, the electrostatic case can be treated by the electrodynamic code with reduced computational effort. In addition, potential boundary conditions as often given in practical applications can be coupled in a similar way to get appropriate boundary conditions for the field equations. Numerical results are shown for an electric dipole, a parallel-plate capacitor, and a Langmuir wave. The use of potential boundary conditions is demonstrated in an Einzel lens simulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 294, 1 August 2015, Pages 547–561
نویسندگان
, , ,