کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
519965 867691 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical integration of the Ostrovsky equation based on its geometric structures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Numerical integration of the Ostrovsky equation based on its geometric structures
چکیده انگلیسی

We consider structure preserving numerical schemes for the Ostrovsky equation, which describes gravity waves under the influence of Coriolis force. This equation has two associated invariants: an energy function and the L2 norm. It is widely accepted that structure preserving methods such as invariants-preserving and multi-symplectic integrators generally yield qualitatively better numerical results. In this paper we propose five geometric integrators for this equation: energy-preserving and norm-preserving finite difference and Galerkin schemes, and a multi-symplectic integrator based on a newly found multi-symplectic formulation. A numerical comparison of these schemes is provided, which indicates that the energy-preserving finite difference schemes are more advantageous than the other schemes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 231, Issue 14, 20 May 2012, Pages 4542–4559
نویسندگان
, , ,