کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
520400 867717 2013 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving partial differential equations numerically on manifolds with arbitrary spatial topologies
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Solving partial differential equations numerically on manifolds with arbitrary spatial topologies
چکیده انگلیسی

A multi-cube method is developed for solving systems of elliptic and hyperbolic partial differential equations numerically on manifolds with arbitrary spatial topologies. It is shown that any three-dimensional manifold can be represented as a set of non-overlapping cubic regions, plus a set of maps to identify the faces of adjoining regions. The differential structure on these manifolds is fixed by specifying a smooth reference metric tensor. Matching conditions that ensure the appropriate levels of continuity and differentiability across region boundaries are developed for arbitrary tensor fields. Standard numerical methods are then used to solve the equations with the appropriate boundary conditions, which are determined from these inter-region matching conditions. Numerical examples are presented which use pseudo-spectral methods to solve simple elliptic equations on multi-cube representations of manifolds with the topologies T3, S2×S1S2×S1 and S3. Examples are also presented of numerical solutions of simple hyperbolic equations on multi-cube manifolds with the topologies R×T3R×T3, R×S2×S1R×S2×S1 and R×S3R×S3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 243, 15 June 2013, Pages 151–175
نویسندگان
, ,