کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
520779 | 867735 | 2012 | 13 صفحه PDF | دانلود رایگان |

One of the main challenges in computational simulations of gas detonation propagation is that negative density or negative pressure may emerge during the time evolution, which will cause blow-ups. Therefore, schemes with provable positivity-preserving of density and pressure are desired. First order and second order positivity-preserving schemes were well studied, e.g., [6] and [10]. For high order discontinuous Galerkin (DG) method, even though the characteristicwise TVB limiter in [1] and [2] can kill oscillations, it is not sufficient to maintain the positivity. A simple solution for arbitrarily high order positivity-preserving schemes solving Euler equations was proposed recently in [22]. In this paper, we first discuss an extension of the technique in [22], [23] and [24] to design arbitrarily high order positivity-preserving DG schemes for reactive Euler equations. We then present a simpler and more robust implementation of the positivity-preserving limiter than the one in [22]. Numerical tests, including very demanding examples in gaseous detonations, indicate that the third order DG scheme with the new positivity-preserving limiter produces satisfying results even without the TVB limiter.
Journal: Journal of Computational Physics - Volume 231, Issue 2, 20 January 2012, Pages 653–665