کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
520791 | 867736 | 2011 | 8 صفحه PDF | دانلود رایگان |

We analyze the different degrees of accuracy of two Monte Carlo methods for the simulation of one-dimensional diffusion processes with homogeneous or spatial dependent diffusion coefficient that we assume correctly described by a differential equation. The methods analyzed correspond to fixed and Gaussian steplengths. For a homogeneous diffusion coefficient it is known that the Gaussian steplength generates exact results at fixed time steps Δt. For spatial dependent diffusion coefficients the symmetric character of the Gaussian distribution introduces an error that increases with time. As an example, we consider a diffusion coefficient with constant gradient and show that the error is not present for fixed steplength with appropriate asymmetric jump probabilities.
Journal: Journal of Computational Physics - Volume 230, Issue 10, 10 May 2011, Pages 3719–3726