کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521292 867761 2013 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: Inertial waves
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: Inertial waves
چکیده انگلیسی

A discontinuous Galerkin finite element method (DGFEM) has been developed and tested for the linear, three-dimensional, rotating incompressible Euler equations. These equations admit complicated wave solutions, which poses numerical challenges.These challenges concern: (i) discretisation of a divergence-free velocity field; (ii) discretisation of geostrophic boundary conditions combined with no-normal flow at solid walls; (iii) discretisation of the conserved, Hamiltonian dynamics of the inertial-waves; and, (iv) large-scale computational demands owing to the three-dimensional nature of inertial-wave dynamics and possibly its narrow zones of chaotic attraction. These issues have been resolved, for example: (i) by employing Dirac’s method of constrained Hamiltonian dynamics to our DGFEM for linear, compressible flows, thus enforcing the incompressibility constraints; (ii) by enforcing no-normal flow at solid walls in a weak form and geostrophic tangential flow along the wall; and, (iii) by applying a symplectic time discretisation.We compared our simulations with exact solutions of three-dimensional incompressible flows, in (non) rotating periodic and partly periodic cuboids (Poincaré waves). Additional verifications concerned semi-analytical eigenmode solutions in rotating cuboids with solid walls. Finally, a simulation in a tilted rotating tank, yielding more complicated wave dynamics, demonstrates the potential of our new method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 241, 15 May 2013, Pages 502–525
نویسندگان
, , ,