کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
521465 867769 2010 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Riemann Problem for the one-dimensional, free-surface Shallow Water Equations with a bed step: Theoretical analysis and numerical simulations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
The Riemann Problem for the one-dimensional, free-surface Shallow Water Equations with a bed step: Theoretical analysis and numerical simulations
چکیده انگلیسی

In this paper, the solution of the Riemann Problem for the one-dimensional, free-surface Shallow Water Equations over a bed step is analyzed both from a theoretical and a numerical point of view. Particular attention has been paid to the wave that is generated at the location of the bed discontinuity. Starting from the classical Shallow Water Equations, considering the bed level as an additional variable, and adding to the system an equation imposing its time invariance, we show that this wave is a contact wave, across which one of the Riemann invariants, namely the energy, is not constant. This is due to the fact that the relevant problem is nonconservative. We demonstrate that, in this type of system, Riemann Invariants do not generally hold in contact waves. Furthermore, we show that in this case the equations that link the flow variables across the contact wave are the Generalized Rankine–Hugoniot relations and we obtain these for the specific problem. From the numerical point of view, we present an accurate and efficient solver for the step Riemann Problem to be used in a finite-volume Godunov-type framework. Through a two-step predictor–corrector procedure, the solver is able to provide solutions with any desired accuracy. The predictor step uses a well-balanced Generalized Roe solver while the corrector step solves the exact nonlinear system of equations that consitutes the problem by means of an iterative procedure that starts from the predictor solution. In order to show the effectiveness and the accuracy of the proposed approach, we consider several step Riemann Problems and compare the exact solutions with the numerical results obtained by using a standard Roe approach far from the step and the novel two-step algorithm for the fluxes over the step, achieving good results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 229, Issue 3, 1 February 2010, Pages 760–787
نویسندگان
, ,