کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522263 867819 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method
چکیده انگلیسی

In this paper we present a random walk model for approximating a Lévy–Feller advection–dispersion process, governed by the Lévy–Feller advection–dispersion differential equation (LFADE). We show that the random walk model converges to LFADE by use of a properly scaled transition to vanishing space and time steps. We propose an explicit finite difference approximation (EFDA) for LFADE, resulting from the Grünwald–Letnikov discretization of fractional derivatives. As a result of the interpretation of the random walk model, the stability and convergence of EFDA for LFADE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 222, Issue 1, 1 March 2007, Pages 57–70
نویسندگان
, , , ,