کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
522901 867880 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier–Stokes equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier–Stokes equations
چکیده انگلیسی

This paper presents a mesh adaptation method for higher-order (p>1p>1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes that conform to potentially complex geometries. A quadrature technique is proposed for accurately integrating on general cut cells. In addition, an output-based error estimator and adaptive method are presented, appropriately accounting for high-order solution spaces in optimizing local mesh anisotropy. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. Robustness of the cut-cell and adaptation technique is successfully tested for highly anisotropic boundary-layer meshes representative of practical high Re   simulations. Furthermore, adaptation results show that, for all test cases considered, p=2p=2 and p=3p=3 discretizations meet desired error tolerances using fewer degrees of freedom than p=1p=1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 225, Issue 2, 10 August 2007, Pages 1653–1672
نویسندگان
, ,