کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
524393 868643 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Matrix exponentials and parallel prefix computation in a quantum control problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Matrix exponentials and parallel prefix computation in a quantum control problem
چکیده انگلیسی

Quantum control plays a key role in quantum technology, in particular for steering quantum systems. As problem size grows exponentially with the system size, it is necessary to deal with fast numerical algorithms and implementations. We improved an existing code for quantum control concerning two linear algebra tasks: the computation of the matrix exponential and efficient parallelisation of prefix matrix multiplication.For the matrix exponential we compare three methods: the eigendecomposition method, the Padé method and a polynomial expansion based on Chebyshev polynomials. We show that the Chebyshev method outperforms the other methods both in terms of computation time and accuracy. For the prefix problem we compare the tree-based parallel prefix scheme, which is based on a recursive approach, with a sequential multiplication scheme where only the individual matrix multiplications are parallelised. We show that this fine-grain approach outperforms the parallel prefix scheme by a factor of 2–3, depending on parallel hardware and problem size, and also leads to lesser memory requirements.Overall, the improved linear algebra implementations not only led to a considerable runtime reduction, but also allowed us to tackle problems of larger size on the same parallel compute cluster.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 36, Issues 5–6, June 2010, Pages 359–369
نویسندگان
, , , , ,