کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526359 869097 2015 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real-time bus route state forecasting using particle filter and mesoscopic modeling
ترجمه فارسی عنوان
پیش بینی وضعیت مسیر اتوبوس در زمان واقعی با استفاده از فیلتر ذرات و مدل سازی مسی کوزی
کلمات کلیدی
مسیر اتوبوس، مدل اتوبوس اتفاقی توزیعهای احتمالی، داده های حمل و نقل پورتلند، فیلتر ذرات، پیش بینی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• A framework based on mesoscopic bus models provides possible trajectories of buses on their route.
• The different models are based on different physical representation for dwell and running times.
• The bus load is a crucial variable to estimate in order to make good predictions during long horizons.
• Refining the travel time representation with signal settings provides longer and more reliable predictions.
• All the models properly forecast the evolution of bus headways.

In the absence of system control strategies, it is common to observe bus bunching in transit operations. A transit operator would benefit from an accurate forecast of bus operations in order to control the system before it becomes too disrupted to be restored to a stable condition. To accomplish this, we present a general bus prediction framework. This framework relies on a stochastic and event-based bus operation model that provides sets of possible bus trajectories based on the observation of current bus positions, available via global positioning system (GPS) data. The median of the set of possible trajectories, called a particle, is used as the prediction. In particular, this enables the anticipation of irregularities between buses. Several bus models are proposed depending on the dwell and inter-stop running time representations. These models are calibrated and applied to a real case study thanks to the high quality data provided by TriMet (the Portland, Oregon, USA transit district). Predictions are finally evaluated by an a posteriori comparison with the real trajectories. The results highlight that only bus models accounting for the bus load can provide valid forecasts of a bus route over a large prediction horizon, especially for headway variations. Accounting for traffic signal timings and actual traffic flows does not significantly improves the prediction. Such a framework paves the way for further development of refined dynamic control strategies for bus operations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 61, December 2015, Pages 121–140
نویسندگان
, , , ,