کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526725 869213 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Keyword spotting in unconstrained handwritten Chinese documents using contextual word model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Keyword spotting in unconstrained handwritten Chinese documents using contextual word model
چکیده انگلیسی


• We propose a contextual word model for keyword spotting from handwritten Chinese documents.
• The contextual word model combines character classifier, geometric and linguistic contexts.
• Promising results were obtained on a large handwriting database CASIA-HWDB.
• The geometric and linguistic contexts improve the spotting performance significantly.

This paper proposes a method for keyword spotting in off-line Chinese handwritten documents using a contextual word model, which measures the similarity between the query word and every candidate word in the document by combining a character classifier and the geometric context as well as linguistic context. The geometric context model characterizes the single-character likeliness and between-character relationship. The linguistic model utilizes the dependency of the word with the external adjacent characters. The combining weights are optimized on training documents. Experiments on a large handwriting database CASIA-HWDB demonstrate the effectiveness of the proposed method and justify the benefits of geometric and linguistic contexts. Compared to transcription-based text search, the proposed method can provide higher recall rate, and for spotting words of four characters, the proposed method provides both higher precision and recall rate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 31, Issue 12, December 2013, Pages 958–968
نویسندگان
, , , ,