کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526909 869259 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Covariance descriptor based on bio-inspired features for person re-identification and face verification
ترجمه فارسی عنوان
توصیفگر کوواریانس بر اساس ویژگی های الهام گرفته از زیست شناسی برای شناسایی فرد و بررسی صورت
کلمات کلیدی
نمایندگی تصویر، شناسایی فرد، تأیید صحت، ویژگی های الهام گرفته از بیولوژیکی، توصیفگر کوواریانس
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• This paper proposes a novel person/face image representation.
• The representation avoids the use of body segmentation or image normalization.
• The representation relies on the combination of BIF and Covariance descriptor.
• The representation can handle background and illumination variations.
• The matching rate at rank 1 on VIPeR is 31.11% and the accuracy on LFW is 84.48%.

Avoiding the use of complicated pre-processing steps such as accurate face and body part segmentation or image normalization, this paper proposes a novel face/person image representation which can properly handle background and illumination variations. Denoted as gBiCov, this representation relies on the combination of Biologically Inspired Features (BIF) and Covariance descriptors [1]. More precisely, gBiCov is obtained by computing and encoding the difference between BIF features at different scales. The distance between two persons can then be efficiently measured by computing the Euclidean distance of their signatures, avoiding some time consuming operations in Riemannian manifold required by the use of Covariance descriptors. In addition, the recently proposed KISSME framework [2] is adopted to learn a metric adapted to the representation. To show the effectiveness of gBiCov, experiments are conducted on three person re-identification tasks (VIPeR, i-LIDS and ETHZ) and one face verification task (LFW), on which competitive results are obtained. As an example, the matching rate at rank 1 on the VIPeR dataset is of 31.11%, improving the best previously published result by more than 10.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 32, Issues 6–7, June–July 2014, Pages 379–390
نویسندگان
, , ,