کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
526929 869260 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiscale fusion of wavelet-domain hidden Markov tree through graph cut
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Multiscale fusion of wavelet-domain hidden Markov tree through graph cut
چکیده انگلیسی

Since object boundaries appear blurry, reduced localization accuracy of wavelet-domain hidden Markov tree-based (WHMT) method poses a problem during the object extraction process. A novel approach to improve localization accuracy by fusing multiscale information of the tree model is presented. We start with calculating the multiscale classification likelihoods of wavelet coefficients by expectation-maximization (EM) algorithm. Energy function is then generated by combining boundary term estimated by classification likelihoods with regional term obtained by approximation coefficients. Through energy minimization via graph cuts, objects are extracted accurately from the images. A performance measure for tobacco leaf inspection is used to evaluate our algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 27, Issue 9, 3 August 2009, Pages 1402–1410
نویسندگان
, , , ,