کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
526997 | 869270 | 2009 | 7 صفحه PDF | دانلود رایگان |

In this paper, we present a framework for robust people detection in low resolution image sequences of highly cluttered dynamic scenes with non-stationary background. Our model utilizes appearance features together with short- and long-term motion information. In particular, we boost Integral Gradient Orientation histograms of appearance and short-term motion. Outputs from the detector are maintained by a tracker to correct any misdetections. A Bayesian model is then deployed to further fuse long-term motion information based on correlation. Experiments show that our model is more robust with better detection rate compared to the model of Viola et al. [Michael J. Jones Paul Viola, Daniel Snow, Detecting pedestrians using patterns of motion and appearance, International Journal of Computer Vision 63(2) (2005) 153–161].
Journal: Image and Vision Computing - Volume 27, Issue 4, 3 March 2009, Pages 437–443