کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527263 869307 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The more you learn, the less you store: Memory-controlled incremental SVM for visual place recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
The more you learn, the less you store: Memory-controlled incremental SVM for visual place recognition
چکیده انگلیسی

The capability to learn from experience is a key property for autonomous cognitive systems working in realistic settings. To this end, this paper presents an SVM-based algorithm, capable of learning model representations incrementally while keeping under control memory requirements. We combine an incremental extension of SVMs [43] with a method reducing the number of support vectors needed to build the decision function without any loss in performance [15] introducing a parameter which permits a user-set trade-off between performance and memory. The resulting algorithm is able to achieve the same recognition results as the original incremental method while reducing the memory growth. Our method is especially suited to work for autonomous systems in realistic settings. We present experiments on two common scenarios in this domain: adaptation in presence of dynamic changes and transfer of knowledge between two different autonomous agents, focusing in both cases on the problem of visual place recognition applied to mobile robot topological localization. Experiments in both scenarios clearly show the power of our approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 28, Issue 7, July 2010, Pages 1080–1097
نویسندگان
, , ,