کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
527469 | 869326 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved spatially adaptive MDL denoising of images using normalized maximum likelihood density
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new method for wavelet denoising using minimum description length (MDL) principle with normalized maximum likelihood density. Denoising is done by hard thresholding and a new spatially adaptive threshold which varies according to the estimated signal variance of each wavelet coefficient is derived using the MDL principle with normalized maximum likelihood density. As the normalized maximum likelihood code encodes the data with the shortest description length, smaller proportion of significant coefficients could be achieved after thresholding compared with simple MDL denoising. Thus better compression is obtained without detoriating the denoising performance measure (PSNR) compared to the MDL thresholding.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 26, Issue 11, 1 November 2008, Pages 1524–1529
Journal: Image and Vision Computing - Volume 26, Issue 11, 1 November 2008, Pages 1524–1529
نویسندگان
Srinivasan Meena, S. Annadurai,