کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527519 869331 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sequential Monte Carlo tracking by fusing multiple cues in video sequences
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Sequential Monte Carlo tracking by fusing multiple cues in video sequences
چکیده انگلیسی

This paper presents visual cues for object tracking in video sequences using particle filtering. A consistent histogram-based framework is developed for the analysis of colour, edge and texture cues. The visual models for the cues are learnt from the first frame and the tracking can be carried out using one or more of the cues. A method for online estimation of the noise parameters of the visual models is presented along with a method for adaptively weighting the cues when multiple models are used. A particle filter (PF) is designed for object tracking based on multiple cues with adaptive parameters. Its performance is investigated and evaluated with synthetic and natural sequences and compared with the mean-shift tracker. We show that tracking with multiple weighted cues provides more reliable performance than single cue tracking.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 25, Issue 8, 1 August 2007, Pages 1217–1227
نویسندگان
, , , ,