کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527528 869331 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views
چکیده انگلیسی

We introduce a convex relaxation approach for the quadratic assignment problem to the field of computer vision. Due to convexity, a favourable property of this approach is the absence of any tuning parameters and the computation of high-quality combinatorial solutions by solving a mathematically simple optimization problem. Furthermore, the relaxation step always computes a tight lower bound of the objective function and thus can additionally be used as an efficient subroutine of an exact search algorithm. We report the results of both established benchmark experiments from combinatorial mathematics and random ground-truth experiments using computer-generated graphs. For comparison, a deterministic annealing approach is investigated as well. Both approaches show similarly good performance. In contrast to the convex approach, however, the annealing approach yields no problem relaxation, and four parameters have to be tuned by hand for the annealing algorithm to become competitive.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 25, Issue 8, 1 August 2007, Pages 1301–1314
نویسندگان
, , ,