کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
527549 869334 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised texture classification: Automatically discover and classify texture patterns
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Unsupervised texture classification: Automatically discover and classify texture patterns
چکیده انگلیسی

In this paper, we present a novel approach to classify texture collections. This approach does not require experts to provide annotated training set. Given the image collection, we extract a set of invariant descriptors from each image. The descriptors of all images are vector-quantized to form ‘keypoints’. Then we represent the texture images by ‘bag-of-keypoints’ vectors. By analogy text classification, we use Probabilistic Latent Semantic Indexing (PLSI) and Non-negative Matrix Factorization (NMF) to perform unsupervised classification. The proposed approach is evaluated using the UIUC database which contains significant viewpoint and scale changes. We also report the results for simultaneously classifying 111 texture categories using the Brodatz database. The performances of classifying new images using the parameters learnt from the unannotated image collection are also presented. The experiment results clearly demonstrate that the approach is robust to scale and viewpoint changes, and achieves good classification accuracy even without annotated training set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 26, Issue 5, 1 May 2008, Pages 647–656
نویسندگان
, , , , ,