کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
528173 869530 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Group sparse representation based classification for multi-feature multimodal biometrics
ترجمه فارسی عنوان
طبقه بندی پراکنده گروهی بر اساس بازنمایی برای بیومتریک چندمودال چندویژگی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Group sparse representation based classification algorithm is proposed for feature-level multimodal biometrics.
• The algorithm is able to handle missing features in multimodal scenario.
• Experimental results on WVU and real world LEA databases show efficacy of the proposed algorithm.

Multimodal biometrics technology consolidates information obtained from multiple sources at sensor level, feature level, match score level, and decision level. It is used to increase robustness and provide broader population coverage for inclusion. Due to the inherent challenges involved with feature-level fusion, combining multiple evidences is attempted at score, rank, or decision level where only a minimal amount of information is preserved. In this paper, we propose the Group Sparse Representation based Classifier (GSRC) which removes the requirement for a separate feature-level fusion mechanism and integrates multi-feature representation seamlessly into classification. The performance of the proposed algorithm is evaluated on two multimodal biometric datasets. Experimental results indicate that the proposed classifier succeeds in efficiently utilizing a multi-feature representation of input data to perform accurate biometric recognition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Fusion - Volume 32, Part B, November 2016, Pages 3–12
نویسندگان
, , , , ,