کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
528192 869534 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms
ترجمه فارسی عنوان
یک رویکرد برای پیاده سازی تکنیک های تلفیق داده ها در شبکه های حسگر بی سیم با استفاده از الگوریتم های یادگیری ماشین ژنتیک
کلمات کلیدی
ترکیب داده های جزئی، محاسبات مستقل، سیستم های طبقه بندی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی

Wireless Sensor Networks (WSNs) can be used to monitor hazardous and inaccessible areas. In these situations, the power supply (e.g. battery) of each node cannot be easily replaced. One solution to deal with the limited capacity of current power supplies is to deploy a large number of sensor nodes, since the lifetime and dependability of the network will increase through cooperation among nodes. Applications on WSN may also have other concerns, such as meeting temporal deadlines on message transmissions and maximizing the quality of information. Data fusion is a well-known technique that can be useful for the enhancement of data quality and for the maximization of WSN lifetime. In this paper, we propose an approach that allows the implementation of parallel data fusion techniques in IEEE 802.15.4 networks. One of the main advantages of the proposed approach is that it enables a trade-off between different user-defined metrics through the use of a genetic machine learning algorithm. Simulations and field experiments performed in different communication scenarios highlight significant improvements when compared with, for instance, the Gur Game approach or the implementation of conventional periodic communication techniques over IEEE 802.15.4 networks.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Fusion - Volume 15, January 2014, Pages 90–101
نویسندگان
, , , , ,