کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
528214 | 869537 | 2013 | 9 صفحه PDF | دانلود رایگان |

In this paper, the problem of distributed weighted robust Kalman filter fusion is studied for a class of uncertain systems with autocorrelated and cross-correlated noises. The system under consideration is subject to stochastic uncertainties or multiplicative noises. The process noise is assumed to be one-step autocorrelated. For each subsystem, the measurement noise is one-step autocorrelated, and the process noise and the measurement noise are two-step cross-correlated. An optimal robust Kalman-type recursive filter is first designed for each subsystem. Then, based on the newly obtained optimal robust Kalman-type recursive filter, a distributed weighted robust Kalman filter fusion algorithm is derived for uncertain systems with multiple sensors. The distributed fusion algorithm involves a recursive computation of the filtering error cross-covariance matrix between any two subsystems. Compared with the centralized Kalman filter, the distributed weighted robust Kalman filter developed in this paper has stronger fault-tolerance ability. Simulation results are provided to demonstrate the effectiveness of the proposed approaches.
Journal: Information Fusion - Volume 14, Issue 1, January 2013, Pages 78–86