کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
528234 869540 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Particle filter robot localisation through robust fusion of laser, WiFi, compass, and a network of external cameras
ترجمه فارسی عنوان
محل ربات های فیلتر ذرات از طریق فیوژن قوی لیزر، فای، قطب نما و شبکه ای از دوربین های خارجی
کلمات کلیدی
محلی سازی ربات، محلی سازی فای، چند دوربین شبکه، فیلتر ذرات، فیوژن سنسور
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Particle filter robot localisation fusing 2D laser, WiFi, compass and external cameras.
• Works with any sensor combination (even if unsynchronized or different data rates).
• Experiments in controlled situations and real operation in social events.
• Analysis and discussion of performance of each sensor and all sensor combinations.
• Best results obtained from the fusion of all the sensors (statistical significance).

In this paper, we propose a multi-sensor fusion algorithm based on particle filters for mobile robot localisation in crowded environments. Our system is able to fuse the information provided by sensors placed on-board, and sensors external to the robot (off-board). We also propose a methodology for fast system deployment, map construction, and sensor calibration with a limited number of training samples. We validated our proposal experimentally with a laser range-finder, a WiFi card, a magnetic compass, and an external multi-camera network. We have carried out experiments that validate our deployment and calibration methodology. Moreover, we performed localisation experiments in controlled situations and real robot operation in social events. We obtained the best results from the fusion of all the sensors available: the precision and stability was sufficient for mobile robot localisation. No single sensor is reliable in every situation, but nevertheless our algorithm works with any subset of sensors: if a sensor is not available, the performance just degrades gracefully.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Fusion - Volume 27, January 2016, Pages 170–188
نویسندگان
, , , , , ,