کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
528481 869576 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Face gender classification: A statistical study when neutral and distorted faces are combined for training and testing purposes
ترجمه فارسی عنوان
طبقه بندی جنسیتی صورت: یک مطالعه آماری که چهره های خنثی و تحریف شده برای اهداف آموزشی و آزمایشاتی ترکیب می شوند؟
کلمات کلیدی
تجزیه و تحلیل صورت، طبقه بندی جنسیتی، نمایندگی جهانی / محلی، آزمایش متقابل پایگاه داده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Study of gender recognition from neutral, expressive and occluded faces
• Comparison of global/local approaches, grey level/PCA/LBP features and three classifiers
• Three statistical tests over two performance measures are employed to support the conclusions.
• Local models surpass global ones with different types of training and test faces.
• Global and local models perform equally with the same type of training and test faces.

This paper presents a thorough study of gender classification methodologies performing on neutral, expressive and partially occluded faces, when they are used in all possible arrangements of training and testing roles. A comprehensive comparison of two representation approaches (global and local), three types of features (grey levels, PCA and LBP), three classifiers (1-NN, PCA + LDA and SVM) and two performance measures (CCR and d′) is provided over single- and cross-database experiments. Experiments revealed some interesting findings, which were supported by three non-parametric statistical tests: when training and test sets contain different types of faces, local models using the 1-NN rule outperform global approaches, even those using SVM classifiers; however, with the same type of faces, even if the acquisition conditions are diverse, the statistical tests could not reject the null hypothesis of equal performance of global SVMs and local 1-NNs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Image and Vision Computing - Volume 32, Issue 1, January 2014, Pages 27–36
نویسندگان
, , ,