کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
529016 869624 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stochastic super-resolution image reconstruction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Stochastic super-resolution image reconstruction
چکیده انگلیسی

The objective of super-resolution (SR) imaging is to reconstruct a single higher-resolution image based on a set of lower-resolution images that were acquired from the same scene to overcome the limitations of image acquisition process for facilitating better visualization and content recognition. In this paper, a stochastic Markov chain Monte Carlo (MCMC) SR image reconstruction approach is proposed. First, a Bayesian inference formulation, which is based on the observed low-resolution images and the prior high-resolution image model, is mathematically derived. Second, to exploit the MCMC sample-generation technique for the stochastic SR image reconstruction, three fundamental issues are observed as follows. First, since the hyperparameter value of the prior image model controls the degree of regularization and intimately affects the quality of the reconstructed high-resolution image, how to determine an optimal hyperparameter value for different low-resolution input images becomes a very challenging task. Rather than exploiting the exhaustive search, an iterative updating approach is developed in this paper by allowing the value of hyperparameter being simultaneously updated in each sample-generation iteration. Second, the samples generated during the so-called burn-in period (measured in terms of the number of samples initially generated) of the MCMC-based sample-generation process are considered unreliable and should be discarded. To determine the length of the burn-in period for each set of low-resolution input images, a time-period bound in closed form is mathematically derived. Third, image artifacts could be incurred in the reconstructed high-resolution image, if the number of samples (counting after the burn-in period) generated by the MCMC-based sample-generation process is insufficient. For that, a variation-sensitive bilateral filter is proposed as a ‘complementary’ post-processing scheme, to improve the reconstructed high-resolution image quality, when the number of samples is insufficient. Extensive simulation results have clearly shown that the proposed stochastic SR image reconstruction method consistently yields superior performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 21, Issue 3, April 2010, Pages 232–244
نویسندگان
, ,