کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
529687 869693 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noise robust image matching using adjacent evaluation census transform and wavelet edge joint bilateral filter in stereo vision
ترجمه فارسی عنوان
تطبیق تصویر قوی با نویز با استفاده از مجله ارزیابی سرشماری مجتمع و فیلتر دو طرفه مشترک لبه موجک در دید استریو
کلمات کلیدی
تطبیق استریو، تبدیل سرشماری، پیاده روی تصادفی، فیلتر دوجداره مشترک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• The adjacent evaluation census is proposed to improve the robustness of census.
• Two different and complementary metrics are extracted to reduce ambiguity.
• The random walk is integrated into aggregation and optimization.
• WEJBF is employed to eliminate error regions of the original disparity map.

Automation application systems based on stereo vision require robust image matching methods to achieve available depth image information. This paper presents a novel noise robust stereo matching using adjacent evaluation census transform and wavelet edge joint bilateral filter. The adjacent evaluation census is firstly proposed to improve the robustness against noise of the census transform. Meanwhile, two different and complementary types of metrics are extracted (the adjacent evaluation census mean and the adjacent evaluation census weighted difference). Moreover, the weighted template is composed of four different directions. Then, to improve the robustness of cost aggregation and disparity optimization, the random walk is integrated into the proposed stereo matching method. Additionally, a disparity map post-processing method named wavelet edge joint bilateral filter is employed to eliminate error regions. An obtained wavelet-based edge image is considered as an important weighted coefficient to guide the post-processing. Experimental results demonstrate that the proposed method presents the best performance of the robustness against noise on the Middlebury dataset. Even in the toughest situation with additive Gaussian noise, our method can still achieve the moderate disparity map. In addition, the wider applicability of the proposed method is demonstrated on the KITTI (i.e., Karlsruhe Institute of Technology (KIT) and Toyota Technological Institute at Chicago (TTI-C)) dataset and some typical real-world sequences.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 38, July 2016, Pages 487–503
نویسندگان
, , , , ,