کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
530879 869797 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Designing a classifier by a layered multi-population genetic programming approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Designing a classifier by a layered multi-population genetic programming approach
چکیده انگلیسی

This paper proposes a method called layered genetic programming (LAGEP) to construct a classifier based on multi-population genetic programming (MGP). LAGEP employs layer architecture to arrange multiple populations. A layer is composed of a number of populations. The results of populations are discriminant functions. These functions transform the training set to construct a new training set. The successive layer uses the new training set to obtain better discriminant functions. Moreover, because the functions generated by each layer will be composed to a long discriminant function, which is the result of LAGEP, every layer can evolve with short individuals. For each population, we propose an adaptive mutation rate tuning method to increase the mutation rate based on fitness values and remaining generations. Several experiments are conducted with different settings of LAGEP and several real-world medical problems. Experiment results show that LAGEP achieves comparable accuracy to single population GP in much less time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 8, August 2007, Pages 2211–2225
نویسندگان
, , , ,