کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531047 869807 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SVM-based feature extraction for face recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
SVM-based feature extraction for face recognition
چکیده انگلیسی

The primary goal of linear discriminant analysis (LDA) in face feature extraction is to find an effective subspace for identity discrimination. The introduction of kernel trick has extended the LDA to nonlinear decision hypersurface. However, there remained inherent limitations for the nonlinear LDA to deal with physical applications under complex environmental factors. These limitations include the use of a common covariance function among each class, and the limited dimensionality inherent to the definition of the between-class scatter. Since these problems are inherently caused by the definition of the Fisher's criterion itself, they may not be solvable under the conventional LDA framework. This paper proposes to adopt a margin-based between-class scatter and a regularization process to resolve the issue. Essentially, we redesign the between-class scatter matrix based on the SVM margins to facilitate an effective and reliable feature extraction. This is followed by a regularization of the within-class scatter matrix. Extensive empirical experiments are performed to compare the proposed method with several other variants of the LDA method using the FERET, AR, and CMU-PIE databases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 8, August 2010, Pages 2871–2881
نویسندگان
, , , ,