کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531339 869830 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On cluster tree for nested and multi-density data clustering
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
On cluster tree for nested and multi-density data clustering
چکیده انگلیسی

Clustering is one of the important data mining tasks. Nested clusters or clusters of multi-density are very prevalent in data sets. In this paper, we develop a hierarchical clustering approach—a cluster tree to determine such cluster structure and understand hidden information present in data sets of nested clusters or clusters of multi-density. We embed the agglomerative k-means algorithm in the generation of cluster tree to detect such clusters. Experimental results on both synthetic data sets and real data sets are presented to illustrate the effectiveness of the proposed method. Compared with some existing clustering algorithms (DBSCAN, X-means, BIRCH, CURE, NBC, OPTICS, Neural Gas, Tree-SOM, EnDBSAN and LDBSCAN), our proposed cluster tree approach performs better than these methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 43, Issue 9, September 2010, Pages 3130–3143
نویسندگان
, , , ,