کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531460 869844 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bagging null space locality preserving discriminant classifiers for face recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Bagging null space locality preserving discriminant classifiers for face recognition
چکیده انگلیسی

In this paper, we propose a novel bagging null space locality preserving discriminant analysis (bagNLPDA) method for facial feature extraction and recognition. The bagNLPDA method first projects all the training samples into the range space of a so-called locality preserving total scatter matrix without losing any discriminative information. The projected training samples are then randomly sampled using bagging to generate a set of bootstrap replicates. Null space discriminant analysis is performed in each replicate and the results of them are combined using majority voting. As a result, the proposed method aggregates a set of complementary null space locality preserving discriminant classifiers. Experiments on FERET and PIE subsets demonstrate the effectiveness of bagNLPDA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 9, September 2009, Pages 1853–1858
نویسندگان
, , , , ,