کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531478 869844 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive spatial information-theoretic clustering for image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Adaptive spatial information-theoretic clustering for image segmentation
چکیده انگلیسی

The incorporation of spatial context into clustering algorithms for image segmentation has recently received a significant amount of attention. Many modified clustering algorithms have been proposed and proven to be effective for image segmentation. In this paper, we propose a different framework for incorporating spatial information with the aim of achieving robust and accurate segmentation in case of mixed noise without using experimentally set parameters based on the original robust information clustering (RIC) algorithm, called adaptive spatial information-theoretic clustering (ASIC) algorithm. The proposed objective function has a new dissimilarity measure, and the weighting factor for neighborhood effect is fully adaptive to the image content. It enhances the smoothness towards piecewise-homogeneous segmentation and reduces the edge blurring effect. Furthermore, a unique characteristic of the new information segmentation algorithm is that it has the capabilities to eliminate outliers at different stages of the ASIC algorithm. These result in improved segmentation result by identifying and relabeling the outliers in a relatively stronger noisy environment. Comprehensive experiments and a new information-theoretic proof are carried out to illustrate that our new algorithm can consistently improve the segmentation result while effectively handles the edge blurring effect. The experimental results with both synthetic and real images demonstrate that the proposed method is effective and robust to mixed noise and the algorithm outperforms other popular spatial clustering variants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 9, September 2009, Pages 2029–2044
نویسندگان
, , , ,