کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
531514 | 869848 | 2008 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Metric learning by discriminant neighborhood embedding
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we learn a distance metric in favor of classification task from available labeled samples. Multi-class data points are supposed to be pulled or pushed by discriminant neighbors. We define a discriminant adjacent matrix in favor of classification task and learn a map transforming input data into a new space such that intra-class neighbors become even more nearby while extra-class neighbors become as far away from each other as possible. Our method is non-parametric, non-iterative, and immune to small sample size (SSS) problem. Target dimensionality of the new space is selected by spectral analysis in the proposed method. Experiments on real-world data sets demonstrate the effectiveness of our method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 41, Issue 6, June 2008, Pages 2086–2096
Journal: Pattern Recognition - Volume 41, Issue 6, June 2008, Pages 2086–2096
نویسندگان
Wei Zhang, Xiangyang Xue, Zichen Sun, Hong Lu, Yue-Fei Guo,