کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531762 869875 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive learning for event modeling and characterization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Adaptive learning for event modeling and characterization
چکیده انگلیسی

Adaptive learning of specific patterns or events of interest has been an area of significant research for various applications in the last two decades. In developing diagnostic evaluation and safety monitoring applications of a propulsion system, it is critical to detect, characterize and model events of interest. It is a challenging task since the detection system should allow adaptive characterization of potential events of interest and correlate them to learn new models for future detection for online health monitoring and diagnostic evaluation. In this paper, a novel framework is established using a hierarchical adaptive clustering approach with fuzzy membership functions to characterize specific events of interest from the measured and processed features. Raw engine measurement data is first analyzed using the wavelet transform to provide features for localization of frequency information for use in the classification system. A method combining hierarchical and fuzzy k-means clustering is then applied to a set of selected measurements and computed features to determine the events of interest during engine operations. Experimental results have shown that the proposed approach is effective and computationally efficient to detect, characterize and model new events of interest from data collected through continuous operations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 40, Issue 5, May 2007, Pages 1544–1555
نویسندگان
, ,