کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
531793 869876 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flexible constrained sparsity preserving embedding
ترجمه فارسی عنوان
انعطاف پذیری محدوده محدود حفظ تعبیه
کلمات کلیدی
تعبیه محدود انعطاف پذیری پیش بینی های حفظ شده، تعبیه منیفولد انعطاف پذیر، یادگیری نیمه نظارتی، مشکل خارج از نمونه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Two non-linear semi-supervised embeddings are proposed.
• These methods elegantly integrate sparsity preserving and constrained embedding.
• The second framework provides a non-linear embedding and its out-of-sample extension.
• Classification performance after embedding is assessed on eight image datasets.
• KNN and SVM classifiers are used after getting the embedding.
• Experimental results on eight public image datasets show the outperformance of the methods.

In this paper, two semi-supervised embedding methods are proposed, namely Constrained Sparsity Preserving Embedding (CSPE) and Flexible Constrained Sparsity Preserving Embedding (FCSPE). CSPE is a semi-supervised embedding method which can be considered as a semi-supervised extension of Sparsity Preserving Projections (SPP) integrated with the idea of in-class constraints. Both the labeled and unlabeled data can be utilized within the CSPE framework. However, CSPE does not have an out-of-sample extension since the projection of the unseen samples cannot be obtained directly. In order to have an inductive semi-supervised learning, i.e. being able to handle unseen samples, we propose FCSPE which can simultaneously provide a non-linear embedding and an approximate linear projection in one regression function. FCSPE simultaneously achieves the following: (i) the local sparse structures is preserved, (ii) the data samples with a same label are mapped onto one point in the projection space, and (iii) a linear projection that is the closest one to the non-linear embedding is estimated. Experimental results on eight public image data sets demonstrate the effectiveness of the proposed methods as well as their superiority to many competitive semi-supervised embedding techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 60, December 2016, Pages 813–823
نویسندگان
, , ,