کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532259 869930 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
k-ANMI: A mutual information based clustering algorithm for categorical data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
k-ANMI: A mutual information based clustering algorithm for categorical data
چکیده انگلیسی

Clustering categorical data is an integral part of data mining and has attracted much attention recently. In this paper, we present k-ANMI, a new efficient algorithm for clustering categorical data. The k-ANMI algorithm works in a way that is similar to the popular k-means algorithm, and the goodness of clustering in each step is evaluated using a mutual information based criterion (namely, average normalized mutual information – ANMI) borrowed from cluster ensemble. This algorithm is easy to implement, requiring multiple hash tables as the only major data structure. Experimental results on real datasets show that k-ANMI algorithm is competitive with those state-of-the-art categorical data clustering algorithms with respect to clustering accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Fusion - Volume 9, Issue 2, April 2008, Pages 223–233
نویسندگان
, , ,