کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532586 869974 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature extraction based on Laplacian bidirectional maximum margin criterion
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Feature extraction based on Laplacian bidirectional maximum margin criterion
چکیده انگلیسی

Maximum margin criterion (MMC) based feature extraction is more efficient than linear discriminant analysis (LDA) for calculating the discriminant vectors since it does not need to calculate the inverse within-class scatter matrix. However, MMC ignores the discriminative information within the local structures of samples and the structural information embedding in the images. In this paper, we develop a novel criterion, namely Laplacian bidirectional maximum margin criterion (LBMMC), to address the issue. We formulate the image total Laplacian matrix, image within-class Laplacian matrix and image between-class Laplacian matrix using the sample similar weight that is widely used in machine learning. The proposed LBMMC based feature extraction computes the discriminant vectors by maximizing the difference between image between-class Laplacian matrix and image within-class Laplacian matrix in both row and column directions. Experiments on the FERET and Yale face databases show the effectiveness of the proposed LBMMC based feature extraction method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 11, November 2009, Pages 2327–2334
نویسندگان
, , , , , ,