کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
532588 869974 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Theoretical analysis on feature extraction capability of class-augmented PCA
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Theoretical analysis on feature extraction capability of class-augmented PCA
چکیده انگلیسی

In this paper, we present a theoretical analysis on a novel supervised feature extraction method called class-augmented principal component analysis (CA-PCA), which is composed of processes for encoding the class information, augmenting the encoded information to data, and extracting features from class-augmented data by applying PCA. Through a combination of these processes, CA-PCA can extract features appropriate for classification. Our theoretical analysis aims to clarify the role of these processes and to provide an explanation on how CA-PCA can extract good features. Experimental results for various datasets are provided in order to show the validity of the proposed method for real problems. The effect of parameters on the quality of extracted features is also investigated and the rules of thumb for determining the appropriate parameters are provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 11, November 2009, Pages 2353–2362
نویسندگان
, ,